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TECHNICAL ABSTRACT

External Award 04HQGR0035

INFLUENCE OF DIGITAL ELEVATION MODEL ERRORS ON THE RELIABILITY
OF MAPS DEPICTING EARTHQUAKE-TRIGGERED LANDSLIDE HAZARDS

William C. Haneberg
Haneberg Geoscience, 10202 39th Avenue SW, Seattle WA 98146, (206) 935-0846,

bill@haneberg.com

More than 1700 centimeter accurate differential global positioning system (GPS)
measurements were used to estimate elevation errors in a conventional USGS 10 m digital
elevation model (DEM) and a 1 m light detection and ranging (LiDAR) DEM covering an 18 km2

portion of Seattle, Washington. Elevation errors were estimated by importing the GPS data into a
1 m raster grid and subtracting the DEM elevations. The 10 m DEM errors had a declustered
mean of –0.92 m and standard deviation of ±2.36 m, whereas the 1 m LiDAR DEM had a
declustered mean of –0.11 m and standard deviation of ±0.75 m. Both have the same orders of
magnitude as GPS-based measurements of conventional and LiDAR DEM errors obtained by
other researchers. The 10 m error data were modeled using a two-component variogram with
ranges of 20 and 1250 m, whereas the 1 m LiDAR error data were modeled using a single
component variogram with a range of 125 m.

Sequential Gaussian simulation with normal score back transformation was used to
model the 10 m DEM elevation error distribution. Twenty five simulated and equally probable
elevation error maps were used to produce DEMs by subtracting each of the error maps from the
original DEM, and the simulated DEMs were used to create slope angle maps, static factor of
safety maps, Newmark critical acceleration maps, and Newmark displacement (DN) maps for a
hypothetical earthquake with an Arias intensity of IA = 4 m/s. Slope angle standard deviations
ranged from 0° to ±11°, with most values in the range of ±3° to  ±5°. The observed elevation
errors gave rise to considerable uncertainty in all of the derivative maps, with the standard
deviations of calculated DN values ranging from 0 to ±10 cm. The impact on landslide hazard
zonation was examined by creating two maps. One classified any raster with a calculated mean
DN ≥ 10 cm to be potentially unstable. The other used the results of the stochastic simulations to
classify as unstable any raster having a ≥ 5% probability of DN ≥ 10 cm. The inclusion of
uncertainty arising from the DEM elevation errors increased the area classified as unstable from
0.6% to 4.1% of the map area, suggesting the failure to account for DEM elevation errors may
lead to serious underestimation of earthquake triggered landslide hazards.

Monte Carlo simulations based upon the observed LiDAR DEM elevation errors
produced slope angle standard deviations of about ±3°, only slightly less than those obtained from
the 10 m DEM even though the DEM grid spacing was reduced by an order of magnitude and the
LiDAR elevation errors are noticeably less than the conventional 10 m DEM errors. This result is
explained by a first-order, second-moment approximation for slope angle error, which shows a
reciprocal scaling relationship between DEM grid spacing, DEM elevation error, and calculated
slope angle error. Although LiDAR elevation errors may produce smaller slope angle errors than
a conventional 10 m DEM, they too may have a significant effect on the reliability of earthquake
triggered landslide hazard maps.
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NON-TECHNICAL SUMMARY

External Award 04HQGR0035

INFLUENCE OF DIGITAL ELEVATION MODEL ERRORS ON THE
RELIABILITY OF MAPS DEPICTING EARTHQUAKE-TRIGGERED

LANDSLIDE HAZARDS

William C. Haneberg
Haneberg Geoscience, 10202 39th Avenue SW, Seattle WA 98146

(206) 935-0846
bill@haneberg.com

Global positioning system (GPS) surveying and computer simulations showed
that errors in conventional USGS and laser (LiDAR) digital elevation models (DEM)
covering part of Seattle introduce significant errors into the slope angle and stability
calculations used to produce maps of earthquake-triggered landslide susceptibility.  The
results of this study suggest that unless the effects of elevation errors are taken into
account, landslide susceptibility maps based on standard U.S. Geological Survey DEMs
are of questionable reliability and may seriously underestimate landslide hazards.
Although LiDAR DEM errors are smaller, they too have the potential to produce
significant errors in landslide susceptibility maps.
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OVERVIEW

REPORT FORMAT

The body of this report is presented in two parts, each of which was prepared for
submission to a peer-reviewed scientific journal.  Because each of the parts is a complete
report in itself, there is some duplication between the two. Each part also has its own
figure numbers, equation numbers, and reference list.

Part I describes the use of centimeter accurate global positioning system (GPS)
surveying to measure elevation errors in a conventional 10 m digital elevation model
(DEM) covering part of Seattle, Washington, and analyze the effects of those errors on
grid-based seismic slope stability calculations of the type used by the U.S. Geological
Survey and others to model the potential for earthquake triggered landsliding. It has been
submitted to Environmental & Engineering Geosciences.

Part II describes a similar analysis of errors in a high-resolution (1 m) DEM
produced using airborne laser scanning technology (also known as Light Detection and
Ranging, or LiDAR) covering essentially the same area as the 10 m DEM. At the time
this report was written, Part II was being prepared for submission.

PROJECT PUBLICATIONS

Haneberg, W.C., 2004, Effects of digital elevation model errors on slope angle, static
factor of safety, and Newmark acceleration uncertainty in GIS-style landslide hazard
modeling: Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p.
297.

Haneberg, W.C., submitted, Effects of digital elevation model errors on spatially
distributed seismic slope stability calculations: an example from Seattle, Washington:
Environmental & Engineering Geoscience.

Haneberg, W.C., in preparation, Elevation errors in a LiDAR DEM of an urban area:
measurement and effects on geomorphic derivatives: for submission to
Geomorphology.

In addition to the abstract and papers listed above, hour-long oral presentations
describing the research were given at the University of Cincinnati, Western Washington
University, and the Washington Section of the Association of Engineering Geologists.

DATA AVAILABILITY

The GPS data collected for this project are available as a tab-delimited text file or
Microsoft Excel file from the PI (William C. Haneberg, Haneberg Geoscience, 10208 39th

Avenue SW, Seattle WA 98146, bill@haneberg.com, 206 935-0846).
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PART I— EFFECTS OF DIGITAL ELEVATION MODEL ERRORS ON
SPATIALLY DISTRIBUTED SEISMIC SLOPE STABILITY CALCULATIONS:

AN EXAMPLE FROM SEATTLE, WASHINGTON

INTRODUCTION

Spatially distributed applications of Newmark’s (1965) sliding-block method
using grids of slope angles calculated from digital elevation models (DEMs) are
becoming the de facto standard for earthquake-triggered landslide assessment over broad
areas (McCalpin; 1997; Mankelow and Murphy, 1998; Miles and Ho, 1999; Miles and
Keefer, 2000; Jibson et al., 2000; Refice and Capolongo, 2002). The accuracy and
reliability of hazard maps produced using this approach depends in part on the accuracy
of slope angles that are calculated from the DEMs and subsequently enter into the
equations for both the static factor of safety against sliding and the Newmark critical
acceleration. Bolstad and Stowe (1994), Fisher (1998), and Holmes et al. (2000),
however, concluded that typical DEMs contain elevation errors large enough to have
significant effects on slope angle calculations. Despite this knowledge, the possible
effects of DEM elevation and slope angle errors are generally not considered even in
cases where the variability of properties such as soil shear strength is formally
incorporated into models of earthquake-triggered landslides (e.g., van Westen and
Terlien, 1996; Mankelow and Murphy, 1998; Refice and Capolongo, 2002). This is most
likely a result of the difficulty and expense of adequately characterizing DEM elevation
errors and assessing their effects on derivative calculations.

This paper describes the results of a field-based study of elevation errors in a U.S.
Geological Survey 10 m DEM and their effects on a hypothetical Newmark slope
stability model for an 18 km2 portion of Seattle contained within the Duwamish Head
1:24,000 quadrangle (Figure 1). It builds upon previous research such as that by Holmes
et al. (2000) and Fisher (1998) by a) measuring elevation errors in a network of closely
spaced points in order to better understand the statistical behavior of DEM elevation
errors at length scales as short as tens of meters, b) using a 10 m rather than 30 m (or
coarser) DEM, and c) explicitly evaluating the effect of slope angle errors on Newmark
seismic slope stability calculations. The work described in this paper does not, however,
take into account the effects of slope angle errors that arise from the existence of small-
scale, or sub-raster, topography that cannot be depicted on a discretely sampled DEM
(Haneberg, in preparation).

 Although LiDAR DEMs gridded at intervals less than 10 m are becoming
increasingly common, and one is available for the area described in this paper (Haneberg,
in preparation), their availability is far from universal. Conventional 10 m DEMs are far
more common and, in many parts of the United States where DEM-based landslide
hazard models might be useful, 30 m DEMs remain the standard (Ohlmacher and Davis,
2003; Haneberg, 2004a). Zhang and Montgomery (1994) concluded that, whereas 10 m
DEMs represent substantial improvement over 30 and 90 m DEMs for hydrologic and
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geomorphic modeling, 2 and 4 m gridded DEMs produced only marginally improved
results. Therefore, 10 m DEMs typify the kind of off-the-shelf data that might be
incorporated into an assessment of earthquake-triggered landslides in the United States.

DATA COLLECTION

Differential elevation and horizontal position data were collected using a pair of
Ashtech ProMark 2 single-frequency (L1) GPS receivers. Both static and stop-and-go
kinematic survey methods were used. The static data were recorded over intervals
ranging from 18 minutes to 1 hour, depending on baseline length and positional dilution
of precision (PDOP) at the time. About two-thirds of the static data were collected using
one of the GPS receivers as a rover and the other as a base station occupying a known
control point at a secure location within the study area, which produced baseline
distances of 1 to 10 km. The control point was established using repeated observations of
an hour or more with one of the GPS receivers and data from the nearby continuously
operating reference stations (CORS) RPT1 and SEAW.  The remaining one-third of the
static points were established using one of the GPS receivers with the RPT1 and SEAW
CORS as control points, producing baselines of 10 to 20 km. These static points were
then used as initialization points for stop-and-go kinematic data collection using the
second GPS receiver. All of the GPS data were processed using the manufacturer’s
proprietary Ashtech Solutions software, yielding 1660 data points consisting of NAD 83
UTM easting and northing along with an orthometric elevation calculated using the
GEOID03 model.

The manufacturer’s specifications for ProMark 2 survey accuracy are 0.005 m + 1
ppm baseline length (horizontal) and 0.010 m + 2 ppm baseline length (vertical) for static
surveys (Thales Navigation, 2002). For stop-and-go kinematic surveys, the corresponding
accuracies are 0.012 m + 2.5 ppm baseline length (horizontal) and 0.015 m + 2.5 ppm
baseline length (vertical). Repeated observations of benchmarks and other known points
suggest that both the accuracy and precision of the GPS data are in many cases on the
order of millimeters and rarely more than a centimeter or two, making them accurate
enough for comparison with DEM elevation values given to the nearest decimeter.

One disadvantage of working in an urban area is that it is difficult to generate a
grid of randomly located GPS measurement points such as that used by Holmes et al,
(2000), who conducted their study in a nature preserve. Data for this study were
necessarily collected in publicly accessible areas such as streets, rights-of-ways, parks,
and undeveloped parcels of land rather than on a truly random grid. Insofar as possible,
GPS measurements points were also chosen so as to avoid multipath interference from
overhead utility lines.  Successful collection of the stop-and-go kinematic data required
that both the rover and base units maintained a continuous lock on at least five satellites,
which made it impossible to use that method beneath trees. Locations of the static and
kinematic data points are shown in Figure 2.
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RESULTS

Spatial Distribution of Errors

Elevation errors were calculated by transforming the DEM datum from NAD 27
to NAD 83, using an inverse squared distance algorithm to interpolate the 10 m DEM
values onto a 1 m grid, reading the GPS elevation data into the same 1 m grid, and
subtracting. The overall accuracy of the transformation was checked visually by
overlaying a 1 m resolution orthophoto of the study area, a shaded relief map produced
from the transformed DEM, and the control points.

The calculated DEM elevation errors ranged from –11.70 m to + 10.91 m, with a
mean of –1.16 m and a standard deviation of ±1.87 m. This range is about half of that
reported by Holmes et al. (2000) in their study of errors in a U.S. Geological Survey 30
m DEM and the standard deviation is similar to that reported by Fisher (1998) is his study
of errors in a British Ordnance Survey 10 m DEM. The bias introduced by spatial
clustering of GPS measurements was removed by cell declustering (Isaaks and
Srivastava, 1989; Goovaerts, 1997), which produced a declustered mean of –0.92 m and
declustered standard deviation of ±2.36 m at a cell size of 1600 m. Figure 3 shows
histograms of the clustered and declustered data. There are weak correlations between the
absolute value of the elevation error and both slope angle and elevation on the DEM
(Figure 4). In both cases the regression lines are significant at the 0.001 level (ANOVA p
< 2 x 10-16), but r2 = 0.12 for error vs. slope angle and r2 = 0.07 for error vs. elevation.
Thus, the elevation errors appear to be largely, albeit not completely, independent of
elevation and slope angle.

The spatial correlation structure of the elevation errors is shown by the empirical
variogram in Figure 5. It was calculated using the Cressie and Hawkins (1980) robust
estimator rather than the classical variogram estimator given in most geostatistics
textbooks (e.g., Isaaks and Srivastava, 1989; Goovearts, 1997) in order to account for the
non-normality of the error data and the effects of outliers. Visual comparison showed that
in this case the robust estimator produced a smoother variogram than did the classical
estimator. Attempts to fit a simple single component model variogram using least-squares
methods all yielded a physically unrealistic nugget of approximately 1 m. The empirical
semivariance at a distance approaching zero should be equal to the instrumental accuracy,
which is much less than 1 m, so a two-component variogram with no nugget was fitted by
eye to the points separated by distances of 3000 m or less. The resulting model
variogram, which is plotted along with the empirical variogram in Figure 5, is
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in which γ (h) is the semivariance (m2) and h is the lag, or distance between points (m). In
order for the variogram to vanish at zero lag and simultaneously honor the empirical data
at lags of tens to hundreds of meters, it was necessary to include a small-scale local
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component (in this case with a range of 20 m) as well as a large-scale component with a
range of 1250 m to reflect the overall trend of the empirical variogram. Fisher (1998) and
Holmes et al. (2000) also found it necessary to use multi-component model variograms to
adequately represent empirical DEM elevation error variograms.

Conditional Simulation of Errors

The spatial distribution of elevation errors was modeled using sequential Gaussian
simulation (e.g., Goovaerts, 1997; Holmes et al, 2000) based on the declustered mean and
the model variogram given in equation (1). The method is conditional because it honors
the location and value of known elevation errors and simulates normally distributed, or
Gaussian, error values elsewhere. A normal score back-transformation was then applied
to each set of simulation results, known as a realization, to produce output with the same
statistical distribution as the measured errors. On the basis of the weak correlations
described above, elevation error was assumed to be independent of elevation and slope
angle. To obtain the results presented in this paper, each new simulated elevation error
value was calculated using the nearest 20 known or previously simulated values. The
gstat package for the open-source statistics software R (Pebesma and Wesseling, 1998;
Pebesma, 2004) was used to obtain the error simulation results described in this paper.

A total of 25 elevation error realizations were calculated on a 1063 by 343 grid of
points, of which 182,787 were on dry land, corresponding to the 10 m DEM grid in the
study area. Five of the elevation error realizations are shown in Figure 6. All of the
realizations show patterns of elevation error that are similar on a gross scale but differ in
detail from map to map. The large-scale similarities reflect the spatial distribution of
measured errors, which persist from simulation to simulation, whereas the small-scale
differences reflect the randomness added by Gaussian simulation of values between the
points at which elevation error was measured. Each error realization was subtracted from
the DEM, which is assumed to consist of the true elevation at that point plus an unknown
amount of error, to produce 25 different but equally probable realizations of the
topography in the study area. Because the topographic realizations take into account
measured elevation errors, each is in theory a more accurate representation of the real
topography than the original DEM.

Figure 7 shows shaded relief images of the original 10 m DEM, the 10 m DEM
with one elevation error subtracted, the average of 25 topographic realizations (DEM
minus simulated errors), and, for comparison, a LiDAR DEM gridded at 3 m intervals.
The most apparent effect of subtracting a single error realization from the DEM is an
increase in noise, which obscures some geomorphic details visible in the original DEM.
When a large number of error realizations are subtracted from the DEM and the results
averaged, however, much of the random component of the noise disappears and the
averaged DEM accentuates topographic subtleties that can be difficult to detect in the
original DEM.
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Effects on Derivative Maps

The topographic realizations were subsequently used to create 25 slope angle
maps, 25 static factor of safety maps, 25 Newmark critical acceleration maps, and 25
slope displacement maps, from which sample mean and sample standard deviation maps
were calculated for each map type. Four slopes were calculated for each DEM grid point
using the eight surrounding elevations, and the maximum value was retained to represent
the slope angle at each point. The static factor of safety against sliding was calculated for
grid each point using the simplified infinite slope approximation

€ 

FS =
cT + γM T cos2 β tanφ
γM T sinβ cosβ

(2)

in which cT  is the total cohesion consisting of both soil cohesion and root strength (Pa),
γM is the moist soil unit weight (N/m3), φ is the angle of internal friction, T is the soil
thickness (m), and β is the slope angle (degrees). In order to evaluate the effects of
elevation and slope angle errors, all of the variables except slope angle were held
constant across the study area and the effects of pore water pressure were not considered.
The following values were chosen based upon a tabulation in McCalpin (1997) and a
requirement of static stability throughout the study area: cT = 10 kPa, γM = 19 kN/m3, T =
2 m, and φ = 35°. Allowing the values to fluctuate randomly or vary according to location
would have complicated the results and masked the effects of elevation errors, which
enter into only the calculation of slope angle and Newmark accleration (and, indirectly,
displacement). Haneberg (2000, 2004 a,b) discusses the additional uncertainty that is
added by allowing the geotechnical parameters to behave as random variables.

Once slope angle and factor of safety maps were calculated for each of the 25
topographic realizations, 25 Newmark critical acceleration realizations were created
using (Newmark, 1965)

€ 

aN = (FS −1)gsinβ (3)

in which g is gravitational acceleration. The Newmark critical acceleration is threshold
above which small increments of slope movement occur during an earthquake, and the
displacement of the slope is estimated rigorously by twice integrating over time the
portions of an accelerogram that lie above the threshold (Newmark, 1965; Jibson, 1993)
or approximately by using empirical relationships incorporating variables such as aN and
Arias intensity (e.g., Jibson et al., 2000). The approximation used in this paper, obtained
by fitting a curve to data from the 1994 Northridge, California earthquake, is (Jibson et
al., 2000)

€ 

logDN =1.521 log IA −1.993 log aN −1.546 (4)
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in which DN is the displacement (cm) of an unstable slope as the result of seismic
shaking, IA is the observed or predicted Arias intensity (m/s), and aN is the Newmark
critical acceleration with units of g. Additional uncertainties introduced by the use of
equation (4), which had a strong but not perfect goodness-of-fit of r2 = 0.83, were not
considered. The results shown in this paper were calculated by assuming that IA = 4 m/s
uniformly across the study area. McCalpin (1997) assumed that landslides would occur in
locations where DN ≥ 5 cm for sands and DN ≥ 20 cm for clays in Seattle. Jibson et al.
(2000) found that 57% of the landslides in the 1994 Northridge, California earthquake
occurred at locations with calculated DN ≤ 5 cm and 90% occurred at locations with DN ≤
10 cm.

Figure 8 shows the mean and standard deviation maps for slope angle, static
factor of safety, Newmark critical acceleration, and displacement. The standard
deviations of the calculated slope angles range from nearly zero to ±11°, with values
most commonly in the range of ±3° to ±4°. Almost all of the values are ±6° or less. As
shown in Figure 9, the slope angle standard deviations show a wide range of variability
when plotted against the mean slope angle. The minimum standard deviations fall
consistently within the range of ±1° to ±2°, but the maximum calculated slope angle
standard deviation values decreased nearly linearly as a function of the mean slope angle.
The slope angle errors propagate into static factor of safety and Newmark acceleration
errors, the former as high as ±2.2 (with most values less than ±0.75) and the latter as high
as ±0.52 g (with most values less than ±0.05 g). The final product of the Newmark
analysis, the estimated displacement, ranges over 0.1 ≥ DN > 25 cm, with most values
calculated to be DN  ≤ 2 cm or so.  Most of the displacement standard deviations are ±5
cm or less, although some exceed 10 cm, with the values generally proportional the mean
slope angle at each grid point. Previous work has shown that factors of safety at a point
tend to better approximated by lognormal distributions than normal distributions, whereas
Newmark critical acceleration values calculated using the factors of safety tend to be
better approximated by symmetric normal distributions (Haneberg 2004 a,b). In order to
determine whether the DN  values are better represented by a symmetric normal
distribution or a positively skewed lognormal distribution, skewness values were
calculated for each of the grid points. As shown in Figure 10, the distributions of results
at the overwhelming majority of grid points are positively skewed. Skewness was
negative at only 3596 of the 182,787 grid points, or less than 2% of the study area.
Therefore, it is assumed that the DN  values at most grid points follow lognormal, or at
least some kind of positively skewed, distributions.

Hazard Zonation Under Uncertainty

The incorporation of probabilistic results into hazard zonation schemes is
complicated by the fact that the results are probability distributions (in this paper
characterized by means and standard deviations) rather than single deterministic values
that can be easily compared with a threshold. Consider the comparison of calculated
probabilistic displacement values with a displacement threshold to determine whether or
not a particular grid point should be classified as being susceptible to earthquake-
triggered landsliding. For a lognormally distributed variable x with arithmetric mean 

€ 

x 
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and standard deviation s, the value of x for which the probability of being exceeded
equals p is (Appendix)
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x = exp 1
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in which 

€ 

erf−1  is the inverse error function. The probability that DN is actually greater
than its calculated mean, 

€ 

D N , at a grid point is found by setting  (5) equal to the mean and
solving for p to yield
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For a normal distribution, the probability that a random variable takes on a value greater
than its mean is always p = 50%. For a lognormal distribution, however, 

€ 

p→ 0
asymptotically as 

€ 

s / x →∞  and 

€ 

p→ 50% asymptotically as 

€ 

s / x → 0  (Figure 11).
Therefore, the probability of misclassifying a potentially unstable grid point as stable can
be as large as that given by equation (6) if the hazard is determined by comparing the
average displacement for each grid point to a threshold.

Calculated 

€ 

s / x  ratios in the study area range over 0.00007 ≤ 

€ 

s / x  ≤ 9.8, with
values < 1 on tending to occur on steep slopes and values > 1 tending to occur on gentle
slopes. This corresponds to maximum probabilities of misclassification ranging from
14% to 50%, which is unacceptable for two reasons. First, the maximum possible
misclassification probability of 50% calls into question the utility of the hazard
assessment that in the limit may not perform any better than the flip of a coin. Second, if
the displacements at each point are lognormally distributed, or nearly so, the probability
of misclassification will depend on the mean and standard deviation of the calculated
displacements at each grid point and vary from point to point across the study area.
Therefore, it is difficult to gauge the reliability of the results across the study area. A
more consistent approach is to use equation (5) to set the probability of misclassification
at an acceptably low level, say 5%, for each grid point. Similar procedures can be
followed if the results are more faithfully replicated by a different probability
distribution.

Figure 12 compares maps of the predicted landslide hazard for the study area
subjected to the same hypothetical IA = 4 m/s earthquake used to produce Figure 8, with a
threshold displacement of 10 cm used to delineate the areas susceptible to landsliding.
The left map, which is based on a comparison of the calculated mean displacement with a
10 cm threshold, predicts that 0.6% of the study area is susceptible to earthquake-
triggered landsliding. The right map, which is based on a comparison of displacements
that allow for no more than a 5% probability of misclassification with the threshold,
predicts that 4.1% of the study area is susceptible to landslides during the hypothetical
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earthquake. Most of the area added when the maximum permissible misclassification
probability was reduced to 5% is in slightly to moderately hilly terrain rather than along
the steepest slopes because, as discussed previously, steep slopes are characterized by
low slope angle uncertainty.  Much of the added area, therefore, might not be predicted to
be susceptible based on a traditional qualitative geologic evaluation even though it must
be considered susceptible if one adopts the maximum possible misclassification criterion
used in this paper.

DISCUSSION

The results described in this paper show that DEM elevation errors propagate
through each successive generation of derivative maps, although the magnitudes of the
uncertainties arising as a consequence of elevation error vary both within and among
maps. In general, comparison of the derivative maps with the original DEM or shaded
relief map shows that the uncertainty tends to decrease as the mean slope angle increases.
Haneberg (2004 a) used an analytical approximation of the slope angle variance to show
that the decrease occurs because the elevation difference enters into the denominator of
the approximation. Thus, there is a rational basis for the observation that any particular
size of elevation error will have a greater effect on the calculated angle of a gentle slope
than a steep slope. The same general relationship holds for calculated displacements,
which tend to have smaller standard deviations in areas of steep slopes than in areas of
gentle slopes. It is also notable that, with very few exceptions and regardless of the slope
angle, there is a minimum slope angle standard deviation of ±1° to ±2° in the study area.

Based on the results in this paper as well as those of Bolstad and Stowe (1994),
Fisher (1998), Holmes et al. (2000), and Wechsler and Kroll (submitted), elevation error
standard deviations of plus or minus several meters and slope angle standard deviations
of plus or minus several degrees should not be surprising in other areas. In practical
applications of any GIS based models in which slope angle enters into the calculations,
standard deviations on the order of at least ±3° to ±4° should be assumed to exist unless
fieldwork proves otherwise. It is likely that the same magnitudes of uncertainties
propagate into slope aspect and curvature calculations, which are widely used measures
of quantitative geomorphology, although they were not evaluated as part of this study
because they do not enter into seismic slope stability calculations. Slope angle standard
deviations of several degrees can, as shown by a sensitivity analysis in Haneberg (2000),
have an effect on static slope stability calculations that is on par with that caused by pore
water pressure variations and angle of internal friction uncertainty.  The observed degree
of slope angle uncertainty also calls into question the practice of calibrating landslide
hazard models to match inventory maps or physical expectations (e.g., no landslides
predicted for dry and static conditions) by adjusting variables such shear strength
parameters while ignoring slope angle uncertainties, because without a detailed site
investigation it is impossible to know how much each of the variables contributes to the
mismatch.

Another practical implication of this work is that estimates of slope-related
quantities will tend to be least reliable in marginal areas adjacent to steep and commonly
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landslide prone hillsides such as coastal bluffs along Puget Sound. Therefore, engineering
geologic and geotechnical characterization efforts may yield the greatest benefits if they
are directed towards the reduction of uncertainty in marginal areas rather than confirming
that steep slopes are indeed the most likely to move during a strong earthquake.
Identification of marginal areas that merit further investigation is likely to be one of the
most important applications of GIS based slope stability models regardless of whether the
triggering mechanism is an earthquake, heavy precipitation, or human activity.

Finally, the work described in this paper emphasizes the fact that the results of
any hazard assessment— regardless of whether it is based on qualitative geologic maps
or quantitative computer simulations— have the potential to be wrong. Therefore, it is
imperative to clearly consider the likelihoods and consequences of being wrong, to
continue developing methods that allow practitioners to explicitly incorporate those
likelihoods into their analyses, and communicating the likelihoods to end users who are
ultimately responsible for the acceptance of risks.
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APPENDIX

The cumulative distribution function for a lognormally distributed random
variable x is
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where the logarithmic mean, µ, and standard deviation, σ, are related to the aritimetric
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To find the value of x that has probability of p or less of occurring, let
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CDF x( ) =1− p (A4)
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Then, substitute equations (A1), (A2), and (A3) into equation (A4) and solve for x, which
yields
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FIGURE CAPTIONS

Figure 1. Index map showing the general location of the study area.

Figure 2. Composite orthophoto and shaded relief image with locations of the static
and kinematic stop-and-go GPS data points. UTM Zone 10 N grid ticks
are shown along the upper and right margins.

Figure 3. Histograms of clustered and declustered elevation error estimates.

Figure 4. Plots showing relationship between the absolute values of the elevation
error estimates and slope angle (upper) and elevation (lower), both
calculated from the U.S. Geological Survey 10 m DEM covering the study
area.

Figure 5. Empirical (open circles) and model (solid line) variograms illustrating the
correlation of elevation error estimates separated by lag h. The expression
for the model variogram is given in equation (1).

Figure 6. Five of the twenty-five elevation error realizations generated using
conditional Gaussian simulation followed by a normal score back-
transform.

Figure 7. Comparison of shaded relief images prepared using the original U.S.
Geological Survey 10 m DEM, one elevation realization consisting of the
10 m DEM with one of the elevation error realizations subtracted, the
average of 25 elevation realizations, and a LiDAR DEM gridded at 3 m
intervals.

Figure 8. Results of Monte Carlo simulations performed using the 25 elevation error
realizations. The top row shows mean value maps and the bottom row
shows standard deviation maps. FS is the static factor of safety against
sliding, aN  is the Newmark critical acceleration, and DN is the Newmark
displacement calculated using the empirical relationship of Jibson et al.
(2000). Displacement was calculated using an assumed Arias intensity of
IA = 4 m/s across the study area.

Figure 9. Plot of slope angle standard deviations vs. mean slope angle, calculated
from the slope angle maps in Figure 8.

Figure 10. Histogram of skewness values calculated for DN distributions at each of
the 182,787 grid points (some small and large values omitted for clarity).

Figure 11. Plot showing the maximum possible probability of misclassifying a
potentially unstable grid point as stable if the classification is based on a
comparison of the mean DN with a threshold value, assuming a lognormal
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distribution with arithmetric mean 

€ 

x  and arithmetric standard deviation s.
The large plot shows results for the values of 

€ 

s / x  calculated for the study
area. The small inset plot shows how the the maximum possible
probability approaches zero as 

€ 

s / x  grows large.

Figure 12. Maps showing predicted landslides (black dots) if the mean displacement
exceeds the 10 cm threshold (left) and if the probability of
misclassification is required to be less than 5% (right). The left map
predicts that 1020 of the grid points will be unstable whereas the right map
predicts that 7572 grid points will be unstable. Dots are shown larger than
actual DEM grid size for visibility.



17

Figure 1



18

Figure 2



19

Figure 3



20

Figure 4



21

Figure 5



22

Figure 6



23

Figure 7



24

Figure 8



25

Figure 9



26

Figure 10



27

Figure 11



28

Figure 12



29

PART II— ELEVATION ERRORS IN A LIDAR DEM OF AN URBAN AREA:
MEASUREMENT AND EFFECTS ON GEOMORPHIC DERIVATIVES

INTRODUCTION

One of the important geomorphological uses of digital elevation models (DEMs)
is the generation of quantitative derivative maps based on the differences of adjacent
elevation values, for example slope angle, slope aspect, slope curvature, topographic
roughness, and residual topography maps. Derivative maps can be used for qualitative
mapping of geomorphic units based on attributes such as local topographic roughness
(Haneberg et al., 2005; McKean and Roering, 2005), as input for rational and empirical
evaluation of landslide, debris flow, and rock-fall hazards (Haneberg, in review, 2004;
Baum, 2002; Guzetti et al., 2002; Holmes et al., 2000; Sidle and Wu, 1999; Pack et al.,
1998; Shaw and Vaugeois, 1999; Montgomery and Dietrich, 1994; Ward et al., 1981),
and as input for runoff and erosion models  (Cochrane et al, 2003; Tarboton, 1997; Quinn
et al., 1991).

Authors such as Haneberg (in review), Holmes et al. (2000), and Fisher (1998)
have shown that the effects of elevation errors on slope angles and other derivative values
calculated from conventional 10 m and 30 m DEMs can impart significant uncertainty
into results. A few others, notably McKean and Roering (in review), Hodgson and
Bresnahan (2004), and Adams and Chandler (2002) have evaluated LiDAR elevation
errors using root-mean-square (RMS) statistics, but the geostatistical variability of high
resolution LiDAR DEM elevation errors and their effects on geomorphic derivatives has
not yet been examined. The work described in this paper 1) used more than 1700
centimeter accurate GPS measurements to estimate errors in a 1 m horizontal resolution
LiDAR DEM covering a portion of Seattle, Washington, 2) used both kriging and
stochastic simulation to visualize the spatial distribution of elevation errors across the
study area, and 3) evaluated the effects of elevation errors on geomorphic derivative
properties by using Monte Carlo simulations of the well-known Zevenbergen and Thorne
(1987) equations for slope angle and slope aspect. The study area is essentially the same
as that used by Haneberg (in review) for an evaluation of conventional 10 m DEM errors
(and, in fact, uses a superset of the GPS measurements from that study), which also
allows the two sets of results to be compared.

DATA COLLECTION

 Study Area

The study area for this project is an 18 km2 portion of Seattle, Washington known
as West Seattle (Figure 1) and covered by the U.S. Geological Survey Seattle SW
(formerly Duwamish Head) 7.5’ quadrangle. Relief in the area is about 155 meters, most
of which occurs along coastal bluffs and a few deeply incised valleys. The study area
consists of glacially striated uplands underlain primarily by till and outwash of the
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Pleistocene Vashon glacial stage (Troost et al., in review), in some places modified by
landslides. Older glacial deposits and some bedrock are exposed locally, generally near
the bottom of coastal bluffs. Land use is primarily urban residential, with some clusters of
low-rise commercial buildings, schools, and parks (both open and heavily  forested).

Global Positioning System Measurements

A total of 1723 differential elevation and horizontal position data were collected
using two Ashtech ProMark 2 single-frequency (L1) GPS receivers. The manufacturer’s
specifications for ProMark 2 survey accuracy are 0.005 m + 1 ppm baseline length
(horizontal) and 0.010 m + 2 ppm baseline length (vertical) for static surveys (Thales
Navigation, 2002). For stop-and-go kinematic surveys, the accuracies are 0.012 m + 2.5
ppm baseline length (horizontal) and 0.015 m + 2.5 ppm baseline length (vertical).
Repeated observations of benchmarks and other known points suggest that both the
accuracy and precision of the GPS data are in many cases on the order of millimeters and
rarely more than a centimeter or two. The general accuracy of survey points was also
checked by overlaying them on a geo-referenced orthophoto with 0.5 m resolution after
each day of data collection.

Both static and stop-and-go kinematic survey methods were used. The static data
were recorded over intervals ranging from 18 minutes to 1 hour, depending on baseline
length and positional dilution of precision (PDOP) at the time. About two-thirds of the
static data were collected using one of the GPS receivers as a rover and the other as a base
station occupying a known control point established at a secure location within the study
area, which produced baseline distances of 1 to 10 km. The control point was established
using repeated observations of an hour or more with one of the GPS receivers and data
from the nearby continuously operating reference stations (CORS) RPT1 and SEAW.  The
remaining one-third of the static points were established using one of the GPS receivers
with the RPT1 and SEAW CORS as control points, producing baselines of 10 to 20 km.
These static points were then used as initialization points for stop-and-go kinematic data
collection along a number of traverses using the second GPS receiver, which allowed for
the rapid collection of many closely spaced data necessary to evaluate the effects of DEM
errors on slope angle maps (Haneberg, in review). All of the GPS data were processed
using the instrument manufacturer’s Ashtech Solutions software, using NAD83 for the
horizontal datum and NAVD88 for the vertical datum. Horizontal positions were
calculated in Washington state plane coordinates and orthometric heights were calculated
using the GEOID03 model incorporated into the Ashtech Solutions software.

One disadvantage of working in an urban area is that it is difficult to generate a
network of randomly located GPS measurement points or to measure elevations at
locations very close to lidar strike points as did Holmes et al. (2000), Hodgson and
Bresnahan (2002), and McKean and Roering (in review), who conducted their studies in
largely undeveloped areas. Data for this study were necessarily collected in publicly
accessible areas such as streets, rights-of-ways, parks, and undeveloped parcels of land
rather than on a random grid. As described below, statistical declustering was used to
help eliminate the effects of non-random data locations when estimating global statistics.
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Another potential problem with GPS surveys in many urban areas is interference with
overhead utility lines. Insofar as possible, the GPS measurements points for this study
were also chosen so as to avoid multipath interference from overhead utility lines.
Successful collection of the stop-and-go kinematic data required that both the rover and
base units maintained a continuous lock on at least five satellites, which also made it
impossible to use that method beneath trees. Locations of the static and kinematic data
points are shown in Figure 2.

Digital Elevation Model Creation

The DEM used for this project was created from x,y,z bare-earth points supplied
by the Puget Sound LiDAR Consortium (PSLC). The LiDAR data were originally
obtained by a private contractor using a multiple-return laser scanner mounted in a fixed-
wing aircraft, with an on-the-ground laser spot of approximately 0.9 m, pulse spacing of
1.5 m, and 50% overlap between adjacent flight lines. This produced coverage with an
average density of approximately 1 pulse/m2 and a stated vertical accuracy of
approximately 0.30 m (with the caveat that the accuracy is likely to be less in some
areas).

The x, y, z points were supplied with units of U.S. survey feet in the Washington
state plane coordinate system and NAD 83 datum (1991 HPGN adjustment). They were
imported into a sparse 1 m (3.2808 feet) raster grid that was filled using inverse distance
squared interpolation. Horizontal coordinates were converted from U.S. survey feet to
meters by recalculating coordinates for the four corners of the DEM and changing the
raster size units. Neither the datum nor the coordinate system was changed by this
procedure.  Heights were converted from feet to meters by simple multiplication. As
received from PSLC, the LiDAR data included several clusters of elevation values for the
waters of Puget Sound. Therefore, the final step of DEM creation was to remove
elevations less than 2.5 m in order to eliminate most of the spurious values. This also had
the effect of removing 4 of the 1723 GPS elevation measurements. The final DEM thus
contained 19,871,336 elevation points for comparison against 1719 GPS measurements.

ELEVATION ERRORS

Method of Calculation

Elevation errors were calculated for each 1 m raster containing a GPS
measurement by subtracting the DEM value for that raster from the GPS value, and the
entire difference was attributed to DEM elevation error (cf. Hodgson and Bresnahan,
2004). This procedure lumps together true LiDAR vertical errors, true LiDAR horizontal
errors, DEM interpolation errors, and GPS surveying errors. This study assumes that GPS
surveying errors are on the order of a centimeter or two, or about the same order of
magnitude as interpolation errors, based upon both the manufacturer’s instrument
specifications and field testing. Thus, the calculated elevation error values represent the
total LiDAR DEM error, which is different than the LiDAR point error and potentially
more relevant to geomorphic modeling projects based on LiDAR DEMs than point error
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measurements. As described below, the errors calculated during this project were
compared with geomorphic factors such as slope angle and topographic roughness but no
attempt was made to subdivide errors on the basis of ground cover or land use.

Global Statistics

The calculated elevation errors ranged from –4.88 m to +3.32 m, with the
majority falling in the range of ±0.5 m. Both clustered and unclustered summary statistics
were calculated for the elevation errors in order to account for the non-random sampling
pattern. The clustered error data had a mean of –0.03 m and a standard deviation of ±0.65
m, and cell declustering (Isaaks and Srivastava, 1989) produced an unclustered mean of
–0.11 m and an unclustered standard deviation of ±0.75 m (Figure 3).

There are no strong relationships between the magnitude of elevation error and
elevation, maximum slope angle, slope aspect, or topographic roughness (Figure 4). The
maximum slope angle for each raster was defined as the largest of the four finite
difference slope values calculated from the eight neighboring rasters. Topographic
roughness was calculated using the method described by Haneberg et al. (in press), in
which roughness is defined as the standard deviation of residual topography within a
moving window of specified size (in this case 5 by 5 rasters). Residual topography, in
turn, was defined as the difference between the 1 m DEM elevations and a topographic
map smoothed with a 5 by 5 raster averaging window. Linear regression showed that
there are statistically significant (p ≤ 0.05) relationships between the absolute value of
elevation error and elevation, slope angle, and topographic roughness but not slope aspect
(Table 1). The goodness of fit was low to virtually nonexistent in all three cases for
which a statistically significant relationship exists, however, and these relationships
therefore have little explanatory power. Taken together, they account for only 30% of the
variability of the elevation error.

Table 1. Linear regression results for the absolute value of elevation error as a function of
four different independent variables.

Intercept Slope r2 p
Elevation 0.33 0.0010 0.0057 0.001

Slope Angle 0.10 0.024 0.19 < 2.2 x 10-16

Aspect Angle 0.46 -0.00021 0.0014 0.06
Roughness 0.18 3.00 0.11 < 2.2 x 10-16

Spatial Correlation Structure

North-south, east-west, and omnidirectional empirical variograms were calculated
using the Cressie and Hawkins (1980) robust method to account for the non-normality of
the error data and the effects of outliers. Each of the two directional variograms has an
angular tolerance of ±22.5°. The elevation errors exhibit a well-developed north-south
spatial correlation structure, parallel to the glacial fabric of the topography, with a
variogram range of about 1500 m (Figure 5A). The east-west spatial correlation structure,
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which is perpendicular to the glacial fabric, is weak to non-existent and the variogram
quality decays at lags greater than several hundreds of meters (Figure 5B). The decay is
most likely related to the small number of data points separated by large lags in the east-
west direction, which is a consequence of the study area shape. The omnidirectional
variogram (Figure 5C) shows a well-developed spatial correlation structure that was
modeled using a least-squares best-fit exponential variogram with a range of 125 m and a
sill of 0.21, or

€ 

γ h( ) = 0.21 1− exp −h /125 m( )[ ] (1)

in which γ  is the semi-variance of the elevation errors and h is the lag, or separation
distance, in meters. The model variogram sill corresponds to an elevation error standard
deviation of ±0.65 m, which identical to that calculated from the clustered error data and
slightly smaller than the value of ±0.75 calculated from the unclustered error data.

Estimation and Simulation

The distribution of elevation errors across the entire study area was approximated
using two different methods: local kriging estimation and Monte Carlo simulation based
upon sequential Gaussian simulation (Isaaks and Srivastava, 1989; Goovaerts, 1997).
Both methods were based on the omnidirectional model variogram described by equation
(1), and calculations were performed using the gstat package for the open-source
statistics software R (Pebesma, 2004). Kriging estimates the elevation errors at specified
points using a weighted linear combination of nearby measured error values (in this case
the 100 nearest values) in a way that minimizes the estimated misfit between the kriged
values and the unknown true values (nb., the misfit is commonly referred to as the
kriging error, but is renamed here because the variable being simulated is itself an error
and it is confusing to refer to two different kinds of errors with similar names). Kriged
estimates of the elevation error were calculated for each point on a regular 10 m grid
covering the entire study area (computer memory limitations ruled out the use of 1 m
grids for this portion of the project). Monte Carlo simulation generates a number of
random simulations, or realizations, of the error distribution from which a mean and
standard devation (or variance) can be calculated at each simulation point. In this study,
as in Haneberg (in review) and Holmes et al. (2000), the random simulations were
generated using sequential Gaussian simulation with normal score back transformation.
Sequential Gaussian simulation honors the known error measurements and simulates the
error at other points using a normal distribution (described by the global mean and
variance) and a model variogram (in this case as described by equation (1)). Nearby
known and previously simulated values are used to simulate new values on a regular grid.
Normal score back-transformation is then used to map the normally distributed results
back onto the observed error distribution. As with the local kriging estimates, the
sequential Gaussian simulation results described in this paper are based on values
calculated using the 100 nearest neighbors. An ensemble of 25 simulations was then used
to calculate the mean and standard deviation of the simulated error at each point on a
regular 10 m grid.
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Results of both the local kriging and Monte Carlo simulations are shown together
in Figure 6 so that they can be easily compared. Kriging produces a relatively smooth
elevation error surface punctuated by many localized highs and lows (Figure 6A) and on
which the uncertainty of the kriged values, as reflected by the kriging misfit standard
deviation, increases sharply with distance to the nearest known point (Figure 6B). This is
a direct consequence of the short variogram range of 125 m and the larger distances
between clusters of elevation measurements. Four of the 25 random realizations are
shown for comparison in Figure 6C-F, with the mean and standard deviation maps for all
25 simulations shown in Figure 6 G,H.  Comparison of the kriged error map and the
realizations shows that each of the four random simulations is essentially a very noisy
version of the kriged distribution. Averaging the 25 simulations to calculate the simulated
means produces a map that is less noisy than any one of the individual simulations but
still more complicated than the kriged map. Like the kriging standard deviation, the
simulated error standard deviation increases with distance from known points and the
GPS survey traverses can be discerned as areas of smaller standard deviations.

EFFECTS ON GEOMORPHIC DERIVATIVES

The effect of DEM elevation errors on derivative calculations is tempered by the
facts that the errors seem to be correlated over distances ranging from meters to
kilometers (Haneberg, in review; Holmes et al., 2000; Fisher, 1998) and that derivatives
are calculated from neighboring elevation values separated from each other by distances
on the order of the DEM grid spacing, 

€ 

Δx , for example 

€ 

2Δx  in slope angle and aspect
calculations (Zevenbergen and Thorne, 1987). The relevant measure of elevation error or
uncertainty is therefore the variance or standard deviation of DEM elevation errors
among grid points located 

€ 

2Δx  apart, not the global variance or standard deviation.

The semi-variance of a spatially correlated variable, in this case the elevation
error 

€ 

ε x( ), is related to the expected or mean value and variance of the elevation errors at
points separated by lag h (Isaaks and Srivastava, 1989; Goovaerts, 1997), or

€ 

γ h( ) = 1
2 E ε x( ) −ε x + h( )[ ]2{ } = 1

2 Var ε x( ) −ε x + h( ){ } (2)

in which 

€ 

γ h( ) is the semi-variance of the elevation errors, E is the expectation operator,
Var is the variance operator, and h is the lag, or distance between pairs of elevation
values. For slope angle and aspect calculations, 

€ 

h = 2Δx  and equation (2) can be
rearranged to give the variance of elevation errors among points located 

€ 

2Δx  from each
other, which is

€ 

Var ε x( ) −ε x + 2Δx( ){ } = 2γ 2Δx( ) (3)

For the model variogram given by equation (1), the elevation error variance appropriate
for geomorphic derivative calculations on a 1 m grid (h = 2 m) is 

€ 

6.7 ×10−3m2. Its square
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root, the elevation error standard deviation, is ±0.082 m. This is slightly more than one-
tenth of the global variance.

The effect of DEM elevation errors on slope angle and slope aspect calculations
was evaluated using a series of Monte Carlo simulations. In each of the simulations,
elevation errors were randomly selected from a normal distribution with a zero mean and
a standard deviation of ±0.082 m, consistent with the values measured in this study, and
then added to a grid of elevation values defining a north-facing plane with a slope angle
of 0°, 10°, or 20°. Slope angle and aspect were then calculated for each of the
hypothetical slopes using the Zevenbergen and Thorne (1987) equations, and the process
was repeated to produce an ensemble of 1000 slope angle and aspect calculations for each
of the three slopes.

Results are shown as a series of histograms in Figure 7. Elevation errors of the
same magnitude as those measured in this study produced slope angle standard deviations
of ±2° to ±3° and simulated slope angles followed symmetric normal-like distributions.
Monte Carlo mean slope angles for the 10° and 20° slopes were accurate to the nearest
degree, but the calculated mean slope angle for 0° plane was 4° and simulation results
followed a positively skewed lognormal-like distribution. The skewness and erroneous
mean calculated for the 0° slope arise because elevation errors can either increase or
decrease the steepness of an inclined plane, but can only increase the steepness of a
perfectly horizontal plane.  Slope aspect errors exhibited a different kind of behavior as
the true slope angle increased from 0° to 20°. The calculated mean was consistently
accurate to the nearest degree for all three hypothetical planar slopes. The calculated
standard deviations follow a nearly uniform distribution with a standard deviation of
±103° for the 0° plane to ±9° for the 20° plane, but follow a symmetric normal-like
distribution with a standard deviation of ±21° for the 10° slope and a very tightly grouped
symmetric distribution with a standard deviation of ±9° for the 20° slope.

With the exception of the skewed 0° slope results, the simulated slope angle
errors agree with slope angle errors predicted using the first-order, second-moment
approximation developed by Haneberg (2004) for use with finite difference slope angle
calculations typically used on DEMs (e.g., Zevenbergen and Thorne, 1987). Rewritten in
terms of the slope angle standard deviation, Haneberg’s (2004) approximation is:

€ 

sβ =
180
π

8 sεΔx
4Δx 2 + zr,c+1 − zr,c−1( )2

+ zr+1,c − zr−1,c( )2 (4)

in which 

€ 

sβ  is the standard deviation of the slope angle in degrees, 

€ 

sε  is the standard
deviation of the elevation errors for the four points used in the slope angle calculation,
separated by 

€ 

Δx is the DEM grid spacing, z is elevation, and r and c are the DEM row and
column indices. Equation (4) assumes that the elevation error standard deviation is the
same for all four elevation values used in the calculation. The presence of elevation
differences in the denominator of equation (5) implies that the elevation error should
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decrease slightly as the slope angle increases. Figure 8 shows the relationship defined in
equation (5) as a function of summed squared elevation differences

€ 

Δz2 = zr,c+1 − zr,c−1( )2
+ zr+1,c − zr−1,c( )2

for slope angles calculated from a 1 m DEM grid with an elevation error standard
deviation of ±0.082 m. Superimposed on the plot are the three Monte Carlo results from
Figure 7 in addition to a fourth simulation for a 45° plane.

DISCUSSION

Centimeter-accurate GPS surveying has shown that elevation errors in a 1 m
LiDAR DEM covering a portion of Seattle have an unclustered mean of –0.11 m, which
slightly better than the stated accuracy of ±0.30 m supplied in the LiDAR metadata, and
an unclustered standard deviation of ±0.75 m. This standard deviation is two to three
times the root mean square errors reported by Hodgson and Bresnahan (2004), Adams
and Chandler (2002), and McKean and Roering (in review), and slightly less than the
±0.84 m standard deviation reported by Norheim et al. (2002) in their assessment of lidar
DEM errors in an area northeast of Seattle. By way of comparison, it is also considerably
smaller than the standard deviation of ±2.36 m reported by Haneberg (in review) from his
study of elevation errors in a conventional 10 m DEM covering the same area and the
values reported by Fisher (1998) and Holmes et al. (2000) in their analyses of 10 m and
30 m DEMs from other areas.

The measured elevation errors are positively but weakly correlated with slope
angle. topographic roughness, and, to a lesser degree, elevation. In all three cases r2

values are low and the relationships have little explanatory power, accounting for no
more than 30% of the elevation error variability. To a first approximation, therefore, the
elevation errors  measured in this study can be considered to be largely independent of
elevation, slope angle, slope aspect, and topographic roughness.

Another significant difference between the LiDAR DEM elevation errors
described in this paper and conventional DEM elevation errors described elsewhere is the
spatial correlation structure. The errors described in this paper were modeled by a single
component variogram with a range of 125 m, whereas the conventional DEMs analyzed
by Haneberg (in review), Fisher (1998), and Holmes et al. (2000) required multi-
component variograms with ranges on the order of a kilometer. The small variogram
range means that, although the global mean and variance can be estimated using a
relatively small number of randomly located measurements (perhaps something on the
order of 102 points), elevation measurements must be closely and uniformly spaced if the
spatial variability of elevation errors is a significant concern. The points must be closely
spaced in order to obtain large numbers of pairs separated by distances less than 102 m,
which is the order of magnitude of the variogram range obtained in this study. If
elevation measurements are clustered, as they necessarily were in this study, then the
reliability of error measurements across the study area will be variable. An ideal LiDAR
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DEM elevation error network that is both dense and uniform would consist of
measurement locations separated from each other by no more than a few tens of meters in
order to adequately characterize the empirical error variogram at lags of 100 to 102 m.
This would amount to many tens of thousands of elevation error measurements for a
study covering an entire 7.5’ topographic quadrangle.

Elevation errors of the magnitude described in this study can impart significant
errors into slope angle and slope aspect calculations based on high resolution DEMs. This
is particularly important if slope angle, aspect, flow direction, or other derivative maps
are as used input for GIS-based models in a regulatory setting, because slope angle
standard deviations of several degrees can have a significant effect on output. The
magnitude of slope angle errors arising from elevation errors in the high-resolution
LiDAR DEM used in this study are only slightly smaller than those calculated for
conventional 10 m and 30 m DEMs by Haneberg (in review), Holmes et al. (2000), and
Fisher (1998). Although a high resolution LiDAR DEM is capable of representing
smaller scale topographic features than a more coarsely gridded conventional DEM, and
thus reduces the component of slope angle error introduced by ignoring sub-raster
topography, the slope angle values calculated from neighboring points will likely have
the same magnitude of uncertainty. This result can be understood by considering the
Haneberg (2004) analytical approximation for slope angle uncertainty given in equation
(4). For the baseline case of zero slope, the slope angle standard deviation given by
equation (4) becomes approximately

€ 

sβ =
1
2

180
π

sε
Δx

(5)

Thus, the elevation error must be reduced proportionally to any decrease in DEM grid
spacing if the slope angle variance is to remain constant. Inclusion of the elevation values
will introduce a dependence on slope angle, as described above, but the fundamental
reciprocal relationship between elevation error and DEM grid spacing remains intact.
Equation (5) predicts a maximum slope angle standard deviation of 4.7° for the
conventional 10 m DEM elevation error data in Haneberg (in review) and 3.3° for the
LiDAR data in this paper. Thus, reducing the DEM grid spacing by a factor of 10 reduced
the slope angle variance by a factor of only 1.4 in this study area.
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FIGURE CAPTIONS

Figure 1. Index map showing the general location of the study area.

Figure 2. Composite orthophoto and shaded relief image with locations of the static
and kinematic stop-and-go GPS data points. UTM Zone 10 N grid ticks
are shown along the upper and right margins.

Figure 3. Histograms of clustered (top) and cell-declustered (bottom) elevation
errors measured in this study, normalized so that the area under the bars of
each histogram sums to unity.

Figure 4. Empirical relationships between the magnitude of the measured elevation
error and elevation, slope angle, slope aspect, and topographic roughness.

Figure 5. North-south, east-west, and omnidirectional variograms of the measured
elevation errors. Bin width is 250 m and the angular tolerance for the
directional variograms is ±22.5°. Solid line in the omnidirectional
variogram is the best-fit model variogram obtained by least-squares fitting
and described by equation (1).

Figure 6. Results of local kriging estimation and stochastic simulation of the
elevation error field across the entire study area based on the model
variogram given by equation (1) and a declustered error mean of –0.11 m.
A) Kriged elevation errors (local kriging using 100 nearest data points). B)
Kriging standard deviation. C-F) Four of the 25 elevation error
realizations produced using sequential Gaussian simulation with normal
score back transformation. G) Simulated mean elevation error distribution
obtained from the 25 stochastic simulations. H) Simulated elevation error
standard deviation distribution obtained from the 25 stochastic
simulations.

Figure 7. Results of Monte Carlo simulation of the effect of observed elevation
errors on slope angles and slope aspects calculated for hypothetical north-
facing slopes with true slope angles of 0°, 10°, and 20°. Each of the three
simulations consists of 1000 realizations of slope angle and slope aspect.

Figure 8. Calculated slope angle standard deviations as predicted by Monte Carlo
simulations from Figure 7 (plus one additional simulation for a true slope
angle of 45°) and the first-order, second-moment approximation of
Haneberg (2004). Elevation difference refers to the squared sum of the
squared row and column elevation differences used in the Zevenbergen
and Thorne (1987) finite difference formula for slope angle.
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